

1 **Conservation Plan for the Yellow Lampmussel, *Lampsilis cariosa*, in North Carolina**

2

3

4

5

Prepared by:

6

Michael Fisk, Eastern Region Aquatic Wildlife Diversity Coordinator

7

8

9

10

Cover photo:

11

Female (top) and male (bottom) Yellow Lampmussel, credit Michael Fisk, NCWRC

12

13

Acknowledgements:

14

Jacob Hill, Eastern Region Aquatic Wildlife Diversity Technician

15

16

Recommended citation:

17

18

North Carolina Wildlife Resources Commission. 2025. Conservation Plan for the Yellow Lampmussel, *Lampsilis cariosa*, in North Carolina, Raleigh, NC.

19
20

Table of Contents

21	EXECUTIVE SUMMARY	1
22	BIOLOGICAL INFORMATION	2
23	Taxonomic Classification and Description	2
24	Life History and Habitat	3
25	Distribution and Population Status	3
26	Historic and Ongoing Conservation Efforts	4
27	THREAT ASSESSMENT	4
28	Reason for Listing	4
29	Present and Anticipated Threats	5
30	CONSERVATION GOAL AND OBJECTIVES	6
31	Conservation Goal	6
32	Conservation Objectives	6
33	CONSERVATION ACTIONS	6
34	Habitat Protection and Habitat Management	6
35	Population Management	7
36	Incentives (Tax Break)	7
37	Monitoring and Research	7
38	Education and Outreach	8
39	Regulations	8
40	LITERATURE CITED	9
41		

42 EXECUTIVE SUMMARY

43 The North Carolina Wildlife Resources Commission developed this conservation plan to direct
44 management activities for the Yellow Lampmussel, *Lampsilis cariosa*, known in North Carolina
45 from the Chowan, Roanoke, Tar, Neuse, Cape Fear, Yadkin-Pee Dee, and Lumber River basins.
46 The species requires high-quality waterways containing cool, well oxygenated and unpolluted
47 water. Waterways must contain adequate suitable habitat, including a variety of substrates like
48 sand, silt, gravel, and cobble. Direct threats to these species include pollution (chemical and
49 thermal), altered flow conditions, sedimentation, unstable or fragmented habitat, invasive
50 species, and diseases.

51 The Yellow Lampmussel is listed as state endangered. The conservation goal is to prevent the
52 extinction of this species and ensure population viability within North Carolina for the next 100
53 years. The plan focuses on identifying and reducing threats, promoting population viability,
54 habitat protection, population monitoring, research, and partnerships. Establishing and
55 maintaining partnerships between North Carolina Wildlife Resources Commission staff and
56 other state agencies, federal agencies, universities, non-profit organizations, industry, local
57 governments, and the public are essential to the implementation of this conservation plan. The
58 management of this species will require collaborative stakeholder efforts to protect sensitive
59 habitats and maintain high-quality water resources throughout North Carolina.

60 **BIOLOGICAL INFORMATION**

61 **Description and Taxonomic Information**

62 The Yellow Lampmussel, *Lampsilis cariosa*, is a freshwater mussel that is a member of the
63 family Unionidae.

64 **Taxonomic Hierarchy** (Integrated Taxonomic Information System, 2020)

65 Phylum: Mollusca

66 Class: Bivalvia

67 Order: Unionoida

68 Family: Unionidae

69 Genus: *Lampsilis*

70 Species: *Lampsilis cariosa* (Say 1817)

71 Synonyms: *Unio crocatus* (Lea 1841), *Lampsilis pallida* (Rafinesque 1820), *Unio oratus* (Conrad
72 1849)

73 The Yellow Lampmussel is a medium sized mussel reaching up to 130 mm in length (Johnson,
74 1970; Bogan and Alderman 2008). The shell shape is obovate. Shell thickness is thin in juveniles
75 becoming thicker with age and is moderately inflated. The anterior margin is rounded with the
76 ventral margin slightly curved, and posterior margin bluntly rounded. The Yellow Lampmussel
77 exhibits sexual dimorphism: male shells are elliptical and somewhat elongate in outline with the
78 ventral margin evenly convex, whereas female shells are subovate to obovate in outline with
79 the ventral margin expanded near the posterior margin, sloping up to a very bluntly rounded
80 posterior margin (Bogan and Alderman 2008). The umbo extends beyond the hinge line (Kendig
81 2014).

82 The periostracum is waxy yellow and sometimes thinly rayed with linear dark green rays
83 primarily restricted to the posterior slope and dorsal side. The periostracum also contains
84 significant growth rests (Kendig 2014). The rays are variable in width, but usually thin, sharp,
85 and dark green to black, contrasting with the yellow of the background. Older specimens
86 become stained brown and lose much of the luster. Nacre color is bluish white, often tinged
87 with cream or salmon (Bogan and Alderman 2008).

88 The left valve is composed of two compressed pseudocardinal teeth, the posterior tooth is low
89 and immediately under the umbo with two delicate lateral teeth. The right valve has a single
90 compressed pseudocardinal tooth, and a single lamellar lateral tooth. The pseudocardinal teeth
91 tend to become stumpy and more ragged with age. The interdentum is narrow but obvious
92 compared with Tidewater Mucket, *Atlanticoncha ochracea* (Bogan and Alderman 2008).

93 Yellow Lampmussel may resemble Tidewater Mucket when young, but the mucket exhibits rays
94 all over the shell when young as opposed to having rays primarily confined to the posterior area
95 as in Yellow Lampmussel. The Yellow Lampmussel also has a mantle flap used as a display
96 mechanism (Kendig 2014). The mantle flap is used as a lure and resembles a small fish to attract
97 host fish. The Tidewater Mucket does not have a modified mantle flap.

98 **Life History and Habitat**

99 The Yellow Lampmussel is a long-term (bradyticic) brooder. Fertilization occurs in the late
100 summer and early fall, with glochidia then overwintering within the female before being
101 released in the spring of the next year (Johnson 1970; Bogan and Alderman 2008).

102 Like most unionids, the Yellow Lampmussel has a complex life cycle that requires an
103 intermediate host. To infest host fish, the Yellow Lampmussel uses a lure that extends along the
104 ventral margin of the mussel and resembles a small fish. When a fish attacks the lure, the
105 mantle tissue is ruptured and a cloud of glochidia is released. The glochidia then latch on the
106 gills and external tissues of the fish, which they parasitize for 2 – 4 weeks before dropping off
107 and beginning the more sedentary phase of their life. Host fish species for the Yellow
108 Lampmussel include the Yellow Perch, *Perca flavescens*, and the White Perch, *Morone*
109 *americana* (Kneeland and Rhymer 2008). In laboratory settings, Largemouth Bass, *Micropterus*
110 *nigricans*, have been successful hosts (Eads et al. 2007). Other studies have found White Bass,
111 Striped Bass, *Morone saxatilis*, Black Crappie, *Pomoxis nigromaculatus*, and Smallmouth Bass,
112 *Micropterus dolomieu*, to serve as hosts in laboratory trials (Eads et al. 2015). Females start
113 displaying when temperatures reach ~12 C (reviewed in Kurth 2007). Females displaying have
114 been observed in May, July, August, and September in North Carolina when water
115 temperatures were > 20 C up to 31.5 C, respectively (NCWRC unpublished data). Considering
116 the temperature that females start to display, this could start as early as March and extend into
117 September. Observations of displaying females in Virginia have occurred in April into June and
118 one observation in October (B. Watson, VDWR personal communication).

119 There is little information pertaining to the age structure of Yellow Lampmussel throughout its
120 range. Individuals have been aged up to 17 years old in Canada with a mean age of 8 years
121 (White 2003). Age distributions of Yellow Lampmussel are unknown in North Carolina's
122 populations but likely live 10 – 15 years.

123 Yellow Lampmussel are typically found in medium to large rivers in a variety of substrates
124 including sand, silt, gravel, and cobble (Bogan and Alderman 2008). The species inhabits lakes
125 and ponds, especially in the northern part of its range. In North Carolina, Yellow Lampmussel
126 are found more often in medium to large rivers (Kendig 2014). The species prefers clean water
127 with ample flow to receive appropriate oxygenation and access to food (Martell 2020). Like
128 other mussels, Yellow Lampmussel populations are patchy and tend to clump together in
129 aggregates (Wick and Huryn 2003; Sabine et al. 2004; Bogan and Alderman 2008).

130 **Distribution and Population Status**

131 Yellow Lampmussel inhabit the Atlantic slope from the Ogeechee River system, Georgia, north
132 to the Sydney River in Nova Scotia (Johnson 1970). In North Carolina, Yellow Lampmussel
133 occurs in the Chowan, Tar-Pamlico, Neuse, Cape Fear, Lumber (Waccamaw sub-basin), Yadkin-
134 Pee Dee, and Roanoke River basins, most commonly near the fall line (Kendig 2014, NCWRC
135 unpublished data). The oldest known record in North Carolina comes from a collection in the

136 late 1800s from the Neuse River, near Raleigh. Historically, the Yellow Lampmussel has been
137 found in 50 HUC10s across 7 river basins. These include the Tar (16 HUC10s), Cape Fear (12
138 HUC10s), Yadkin-Pee Dee (7 HUC10s), Neuse (8 HUC10s), Roanoke (3 HUC10s), Chowan (2
139 HUC10s), and Lumber (2 HUC10s) river basins. In the last 20 years, the Yellow Lampmussel has
140 been detected in 37 HUC10s across all 7 river basins. The species has not been detected in over
141 20 years in 13 HUC10s, a 26% overall decline. Of these, the species has not been detected in
142 over 40 years in just one HUC10 in the Neuse River basin. The largest declines are in the Tar and
143 Cape Fear River basins where 31% (Tar) and 42% (Cape Fear) of occupied HUC10s have not
144 detected Yellow Lampmussel in 21 – 40 years (Figure 1). More recent collections in other basins
145 include: 3 HUC10s in the Yadkin-Pee Dee, 4 HUC10s in the Neuse, 3 HUC10s in the Roanoke,
146 and 2 HUC10s in the Chowan and Lumber River basins (unpublished data, NCWRC).

147 Mussel survey techniques and methods vary throughout the state considerably so overall trend
148 comparisons can be difficult. For the Yellow Lampmussel, surveys where search effort and
149 number of live mussels collected were recorded, Catch Per Unit Effort (CPUE, mussels
150 collected/person hour) was calculated to examine general trends. Detections of Yellow
151 Lampmussel are from both non-targeted and targeted surveys but are combined here to
152 compare between river basins. The Lumber River Basin has the highest mean CPUE of 12.1
153 mussels/hr. This is due to the population of Yellow Lampmussel in Lake Waccamaw. In the
154 Roanoke Basin, specifically, the Dan River has a mean CPUE = 2.0 mussels/hr, followed by the
155 Chowan (1.9 mussels/hr), Cape Fear (1.2 mussels/hr), and Tar River basins (1.1 mussels/hr). The
156 Neuse and Pee Dee River basins have the lowest mean CPUE at 0.5 and 0.3 mussels/hr,
157 respectively (NCWRC, unpublished data). Collections of Yellow Lampmussel are typically low
158 although up to 138 individuals have been observed at Lake Waccamaw in one survey in 2018.
159 Other large collections have occurred in the Eno River in 2007 and the South Flat River in 2001
160 where more than 20 individuals were collected. Additionally, detections have exceeded 10
161 individuals in the Dan River several times and 24 were observed in 2019.

162 In North Carolina, the Yellow Lampmussel is listed as state endangered and is ranked as S3 in
163 the NC Natural Heritage Program's Rare Species list (Ratcliffe et al. 2024). Federally, the Yellow
164 Lampmussel is considered a species of concern (USFWS 1994). The Yellow Lampmussel is
165 similarly considered under threat by prominent non-governmental organizations. NatureServe
166 lists the species as vulnerable (G3) both throughout its whole range and in North Carolina
167 (Cordeiro 2011). The International Union for the Conservation of Nature's most recent
168 assessment categorizes the Yellow Lampmussel as vulnerable as well, citing significant losses of
169 mature individuals across its range (Bogan and Woolnough 2017).

170 **Historic Conservation Efforts**

171 The Commission has conducted general surveys for the Yellow Lampmussel throughout its
172 range in North Carolina, although most collections of this species are from community-based
173 mussel surveys. Host fish have been identified in laboratory trials (Eads et al. 2015) and
174 confirmed in field trials utilizing genetic techniques (Kneeland and Rhymer 2008). Glochidia

175 have also been successfully transformed using in-vitro methodologies using a sterile media
176 solution with equine serum (Walter 2020). The microbiomes of *in vitro* and *in vivo* transformed
177 mussels were compared and it was found that *in vitro* Yellow Lampmussel had significantly
178 fewer bacterial families than *in vivo* transformation at day 0. However, with time, the bacterial
179 composition converged and by day 15 were similar (Walter 2020). As a result of conservation
180 efforts associated with the 2014 coal ash spill in the Dan River, propagated individuals of Yellow
181 Lampmussel were successfully released into authorized areas in the Dan River by NCWRC staff.
182 Yellow Lampmussel genetic diversity has not been assessed throughout the state. A study
183 describing the genetic diversity of two populations of Yellow Lampmussel in Virginia as well as
184 the South Flat River in the upper Neuse River basin in NC described these populations as small,
185 isolated, and subject to random genetic drift and inbreeding (Olivera-Hyde and Hallerman
186 2018).

187 **THREAT ASSESSMENT**

188 **Reason for Listing**

189 No population or density estimates are available for North Carolina populations of Yellow
190 Lampmussel but based on NCWRC survey data, the species' current range is more restricted
191 and fragmented when compared to where it historically occurred. The species was evaluated
192 for listing in 2016 using the North Carolina Species Assessment Tool (Harris et al. 2016).
193 Evaluations indicated the Yellow Lampmussel has experienced a 47.5–50.9% decline in Area of
194 Occupancy.

195 **Present and Anticipated Threats**

196 As with all aquatic species, there are many natural and anthropogenic factors that threaten the
197 long-term viability of Yellow Lampmussel. Extinction and decline of North American unionid
198 bivalves can be linked to impoundment and inundation of riffle habitat from dams throughout
199 the United States. The loss of obligate hosts, coupled with increased siltation, and various types
200 of industrial and domestic pollution have resulted in the rapid decline of the unionid bivalve
201 fauna in North America (Bogan 1993, NCWRC 2015). Dams, both manmade and natural (e.g.,
202 beavers: Hoch 2012; Kemp et al. 2012), are a barrier to dispersal of host fish and attached
203 glochidia. Beaver dams not only inundate and alter riffle/run mussel habitat upstream of the
204 dam but also affect mussel populations downstream of the dam by increasing fluctuations in
205 flow regime, decreasing dissolved oxygen levels, and increasing the variability of food quality
206 and quantity (Hoch 2012, Kemp et al. 2012). Wastewater that contains monochloramine and
207 unionized ammonia compounds are acutely toxic and pose a significant threat to all aquatic
208 species, especially mussels. Point source discharges from municipalities may be responsible for
209 glochidia mortality that results in local extirpation of mussels (Goudreau et al. 1993, Gangloff et
210 al. 2009, NCWRC 2015). Impervious surfaces in urbanized watersheds exacerbate high water
211 levels, even during short rainfall events, which can result in flash flooding. These high or flashy
212 flow events contribute to increased sediment loads and erosion, turbidity throughout the water

213 column, and stream bed movements that stress mussel populations (Gangloff et al. 2009,
214 NCWRC 2015). Climate change and development will continue to bring additional stressors that
215 need to be evaluated for mussels. Furthermore, specific pollutants that may be introduced into
216 the aquatic environment, the interactions of pollutants and temperature (from climate change),
217 salinity (related to sea level rise), and lower dilution (from altered flows) will need to be
218 considered (NCWRC 2015). In addition, invasive species such as Basket Clam, *Corbicula*
219 *fluminea*, Flathead Catfish, *Pylodictis olivaris*, and Hydrilla, *Hydrilla verticillata*, can create
220 competitive pressures on food resources and habitat availability. In addition, these factors can
221 decrease oxygen availability, cause ammonia spikes, alter benthic substrates, impact host fish
222 communities, reduce stream flow, and increase sediment buildup (Belanger et al. 1991, Scheller
223 1997, NCANSMPC 2015, NCWRC 2015).

224 **CONSERVATION GOAL AND OBJECTIVES**

225 **Conservation Goal**

226 To prevent the extinction of Yellow Lampmussel and promote population viability (i.e., multiple
227 age classes and wild recruitment) within North Carolina for the next 100 years.

228 **Conservation Objectives**

- 229 1. Promote habitat protection and maintain populations of Yellow Lampmussel within
230 Management Units (MUs). Management Units will be defined based on hydrologic
231 units (i.e., HUC10s; Table 1; Figure 2).
- 232 2. When appropriate, utilize captive propagation and/or translocations to augment or
233 establish populations of Yellow Lampmussel where suitable habitat exists.
- 234 3. Establish connectivity and gene flow between existing and established populations
235 utilizing translocations and/or barrier removal.

236 **CONSERVATION ACTIONS**

237 **Habitat Protection and Habitat Management**

238 Protecting habitat integrity, including hydrology, is crucial for species survival. Comments on
239 permit reviews should stress minimizing inputs that include chemical pollutants such as
240 herbicides, pesticides, pharmaceuticals, and industrial compounds, as well as thermal plumes,
241 sediment and nutrients carried by storm water. Find ways to reduce or prevent
242 pharmaceuticals, personal care products, PFAS from entering surface waters from wastewater
243 treatment plants. Staff will recommend that all permits issued within basins where Yellow
244 Lampmussel occur follow the recommendations of the NCWRC's mitigation document entitled
245 "Guidance Memorandum to Address and Mitigate Secondary and Cumulative Impacts to
246 Aquatic and Terrestrial Wildlife Resources and Water Quality" (NCWRC 2002). Forestry activities
247 should incorporate forest practice guidelines (FPGs), or best management practices (BMPs)
248 outlined in the North Carolina Forestry Best Management Practices Manual to Protect Water
249 Quality (NCFS 2021) and as required by certifying organizations such as those of the Sustainable

250 Forestry Initiative/Forest Stewardship Council/American Tree Farm System certification
251 standards. Where applicable, the Yellow Lampmussel will be incorporated into NCWRC game
252 land management plans to prioritize and protect suitable habitat. This includes maintaining
253 proper riparian buffers and managing and restoring aquatic habitats through barrier removal
254 and beaver management. Game lands may also be used for future augmentations. Restoration
255 of habitat should be prioritized for primary HUCs and should focus on the protection of riparian
256 habitat and associated uplands (Table 1, Figure 2).

257 **Population Management**

258 Yellow Lampmussel populations may be enhanced by augmenting existing populations with
259 propagated individuals. Propagated mussels may also be reintroduced into areas that were
260 historically occupied where suitable habitat exists. To minimize any real or perceived regulatory
261 burden, a Conservation Benefit Agreement (CBA) could potentially be used to facilitate releases
262 in locations with private land ownership (USFWS 2024), especially when the species is under
263 consideration for federal protection under the Endangered Species Act. A property owner
264 management agreement will be established prior to reintroduction into an unoccupied area
265 under a CBA, if warranted.

266 Augmentations and Reintroductions will be prioritized as follows:

- 267 1. All primary river basin MUs (Table 1, Figure 2).
- 268 2. Additional augmentation areas within the known range of Yellow Lampmussel (Table 1;
269 Figure 2), if propagation efforts exceed primary MU needs.
- 270 3. Reintroduction of Yellow Lampmussel into areas within the presumed historical range, if
271 propagation efforts exceed MU needs. Ideally located in areas with reduced likelihood
272 of anthropogenic threats.

273 If areas are identified in (2) or (3) that would provide greater conservation benefit to the Yellow
274 Lampmussel, then these will be prioritized over (1).

275 **Incentives**

276 The NCWRC will encourage private landowners within Yellow Lampmussel watersheds to
277 participate in the Wildlife Conservation Lands program. This program allows qualifying
278 landowners whose property is in proximity to streams with statelisted species to get tax
279 incentives for implementing conservation actions.

280 **Monitoring and Research**

281 Monitoring and research activities are needed to evaluate trends in abundance and distribution
282 as well as fill knowledge gaps in species life history and habitat requirements. These actions are
283 necessary to meet management goals. The NCWRC will conduct and engage with partners to
284 conduct the following activities:

285 1. Conduct targeted surveys for Yellow Lampmussel to determine contemporary
286 distribution.
287 2. Monitor known Yellow Lampmussel populations every 5–10 years within each MU to
288 assess survival, abundance, population structure, recruitment, and genetic diversity.
289 3. Determine the genetic diversity and number of genetically distinct populations of Yellow
290 Lampmussel throughout its range in North Carolina.
291 4. Develop captive propagation techniques to maximize yield, genetic diversity, and post
292 release survival.
293 5. Determine locations for establishing Yellow Lampmussel populations and monitor the
294 success of population establishment.
295 6. Conduct surveys for host fish abundance, population structure, and recruitment within
296 each MU.
297 7. Investigate techniques to reduce the abundance of Basket Clam.
298 8. Determine the known historical range of Yellow Lampmussel by verifying the
299 identification of specimens held in museum collections.
300 9. Determine the impact of Flathead Catfish and other invasive species on Yellow
301 Lampmussel host fish populations.
302 10. Determine if other lakes or reservoirs are suitable for Yellow Lampmussel introductions.

303

304 **Education and Outreach**

305 Staff will continue to develop publications and reports as well as highlight conservation efforts
306 through channels such as the NC Chapter of the American Fisheries Society and the Freshwater
307 Mollusk Conservation Society. Results of research and monitoring projects will be presented at
308 professional and non-technical meetings. Aquatic Wildlife Diversity staff will coordinate with
309 Wildlife Education staff to promote education and awareness of the Yellow Lampmussel.
310 Highlighting efforts to conserve the species and its habitat will be important for public
311 awareness.

312 **Regulations**

313 Take or possession of this species without a valid permit is currently prohibited under NC law
314 and administrative code (15A NCAC 10I .0102) and is considered a Class 1 misdemeanor (§ 113
315 337b). Harvest of state listed mussels is prohibited. Currently, individuals with a valid fishing
316 license can harvest up to 200 non-listed mussels per day, but only within specified impounded
317 waters (NCWRC 2025). An exception to this is there is no daily creel limit on the introduced
318 Basket Clam (listed as Asian Clam in NC regulations digest) in impounded waters. Harvest of any
319 mussels is prohibited in Lake Waccamaw, which has a unique mussel assemblage including the
320 Yellow Lampmussel. In other impounded waters, the chance that a Yellow Lampmussel will be
321 misidentified and harvested is minimal.

323 **Literature Cited**

324 Belanger, S. E. 1991. The effect of dissolved oxygen, sediment, and sewage treatment plant
325 discharges upon growth, survival and density of Asiatic clams. *Hydrobiologia* 218:113–
326 126.

327 Bogan, A. E. 1993. Freshwater bivalve extinctions (Mollusca: Unionoida): a search for causes.
328 *American Zoologist* 33:599–609.

329 Bogan, A., and Alderman, J. 2008. Workbook and key to the freshwater bivalves of South
330 Carolina.

331 Bogan, A., and D. Woolnough, 2017. *Lampsilis cariosa*, Yellow Lampmussel THE IUCN RED LIST
332 OF THREATENED SPECIES. <https://doi.org/10.2305/IUCN.UK.2017.>

333 Cordeiro, J. 2011. *Lampsilis cariosa*, NatureServe Explorer. NatureServe Explorer.
334 https://explorer.natureserve.org/Taxon/ELEMENT_GLOBAL.2.109623/Lampsilis_cariosa.

335 Eads, C. B., M. E. Raley, E. K. Schubertand, A. E. Bogan, and J. F. Levine. 2007. Propagation of
336 freshwater mussels for release into North Carolina waters. Report to North Carolina
337 Department of Transportation. Project Number: HWY-2005-07.

338 Eads, C. B., J. E. Price, and J. F. Levine. 2015. Fish Hosts of Four Freshwater Mussel Species in the
339 Broad River, South Carolina, *Southeastern Naturalist* 14:85–97

340 Fisheries and Oceans Canada. 2009. Management Plan for the Yellow Lampmussel (*Lampsilis*
341 *cariosa*) in Canada [Proposed] (Species at Risk Act Management Plan Series). Fisheries
342 and Oceans Canada. http://www.sararegistry.gc.ca/approach/act/default_e.cfm.

343 Gangloff, M. M., L. Siefferman, W. Seesock, and E. C. Webber. 2009. Influence of urban
344 tributaries on freshwater mussel populations in a biologically diverse piedmont (USA)
345 stream. *Hydrobiologia* 636:191–201.

346 Goudreau, S. E., R. J. Neves, and R. J. Sheehan. 1993. Effects of wastewater treatment plant
347 effluents on freshwater mollusks in the upper Clinch River, Virginia, USA. *Hydrobiologia*
348 252:211–230.

349 Haag, W. R. 2012. North American freshwater mussels: Natural history, ecology, and
350 conservation. Cambridge University Press.

351 Harris, M., L. Siefferman, J. A. Jones, and M. Gangloff. 2016. Evaluation of the North Carolina
352 (Conservation Status) Assessment Tool. Report to the NCWRC.

353 Hoch, R. A. 2012. Beaver and mill dams alter freshwater mussel habitat, growth, and survival in
354 North Carolina Piedmont streams. Master's thesis. Appalachian State University, Boone,
355 North Carolina.

356 Johnson, R. I. 1970. The systematics and zoogeography of the Unionidae (Mollusca: Bivalvia) of
357 the southern Atlantic Slope Region. *Bulletin of the Museum of Comparative Zoology*
358 140:263–449.

359 Kemp, P. S., T. A. Worthington, T. E. L. Langford, A. R. J. Tree, and M. J. Gaywood. 2012.
360 Qualitative and quantitative effects of reintroduced beavers on stream fish: Impacts of
361 beaver on freshwater fish. *Fish and Fisheries* 13:158–181.

362 Kendig, K. M. 2014. Freshwater Mussels of North Carolina (Atlantic Slope). North Carolina
363 Department of Transportation, Raleigh, North Carolina.

364 Kneeland, S. C., and J. M. Rhymer. 2008. Determination of fish host use by wild populations of
365 rare freshwater mussels using a molecular identification key to identify glochidia.
366 *Journal of the North American Benthological Society*, 27(1).

367 Martell, V. 2020. Improving Growth and Survival of Cultured Yellow Lampmussel (*Lampsilis*
368 *cariosa*) for Restoring Populations.

369 Nichols, S. J., and D. Garling, 2000. Food-web dynamics and trophic-level interactions in a
370 multispecies community of freshwater unionids. *Canadian Journal of Zoology*, 78:871–
371 882.

372 NCANSMP (North Carolina Aquatic Nuisance Species Management Plan Committee). 2015.
373 North Carolina Aquatic Nuisance Species Management Plan. Raleigh, North Carolina.

374 NCFS (North Carolina Forest Service). 2021. North Carolina Forestry Best Management Practices
375 Manual to Protect Water Quality. North Carolina Forest Service.

376 NCWRC (North Carolina Wildlife Resources Commission). 2002. Guidance Memorandum to
377 Address and Mitigate Secondary and Cumulative Impacts to Aquatic and Terrestrial
378 Wildlife Resources and Water Quality. Raleigh, North Carolina.

379 NCWRC (North Carolina Wildlife Resources Commission). 2015. North Carolina Wildlife Action
380 Plan. Raleigh, North Carolina.

381 NCWRC (North Carolina Wildlife Resources Commission). 2025. North Carolina inland fishing,
382 hunting, and trapping digest 2025–2026.

383 Olivera-Hyde, M., and E. Hallerman. 2018. Survey of Population Genetic Variation in Virginia
384 Yellow Lampmussel, *Lampsilis cariosa*. Virginia Tech, Blacksburg VA.

385 PSHA and CCAA (Programmatic Safe Harbor Agreement and Candidate Conservation Agreement
386 with Assurances). 2022. U.S. Fish and Wildlife Service.

387 Ratcliffe, J., L. E. Hamon, and M. B. East. 2024. Natural Heritage Program List of Rare Animal
388 Species of North Carolina 2024.

389 Sabine, D. L., S. Makepeace, and D. F. McAlpine, 2004. The yellow lampmussel (*Lampsilis*
390 *cariosa*) in New Brunswick: A population of significant conservation value. *Northeastern*
391 *Naturalist*, 11:407–420.

392 Scheller, J. L. 1997. The effect of dieoffs of Asian clams (*Corbicula fluminea*) on native
393 freshwater mussels (Unionidae). M.S. Thesis, Virginia Polytechnic Institute and State
394 University, Blacksburg, Virginia.

395 Strayer, D. L., J. A. Downing, W. R. Haag, T. L. King, J. B. Layzer, T. J. Newton, and S. J. Nichols,
396 2004. Changing perspectives on pearly mussels, North America's most imperiled
397 animals. *Bioscience*, 54:429–439.

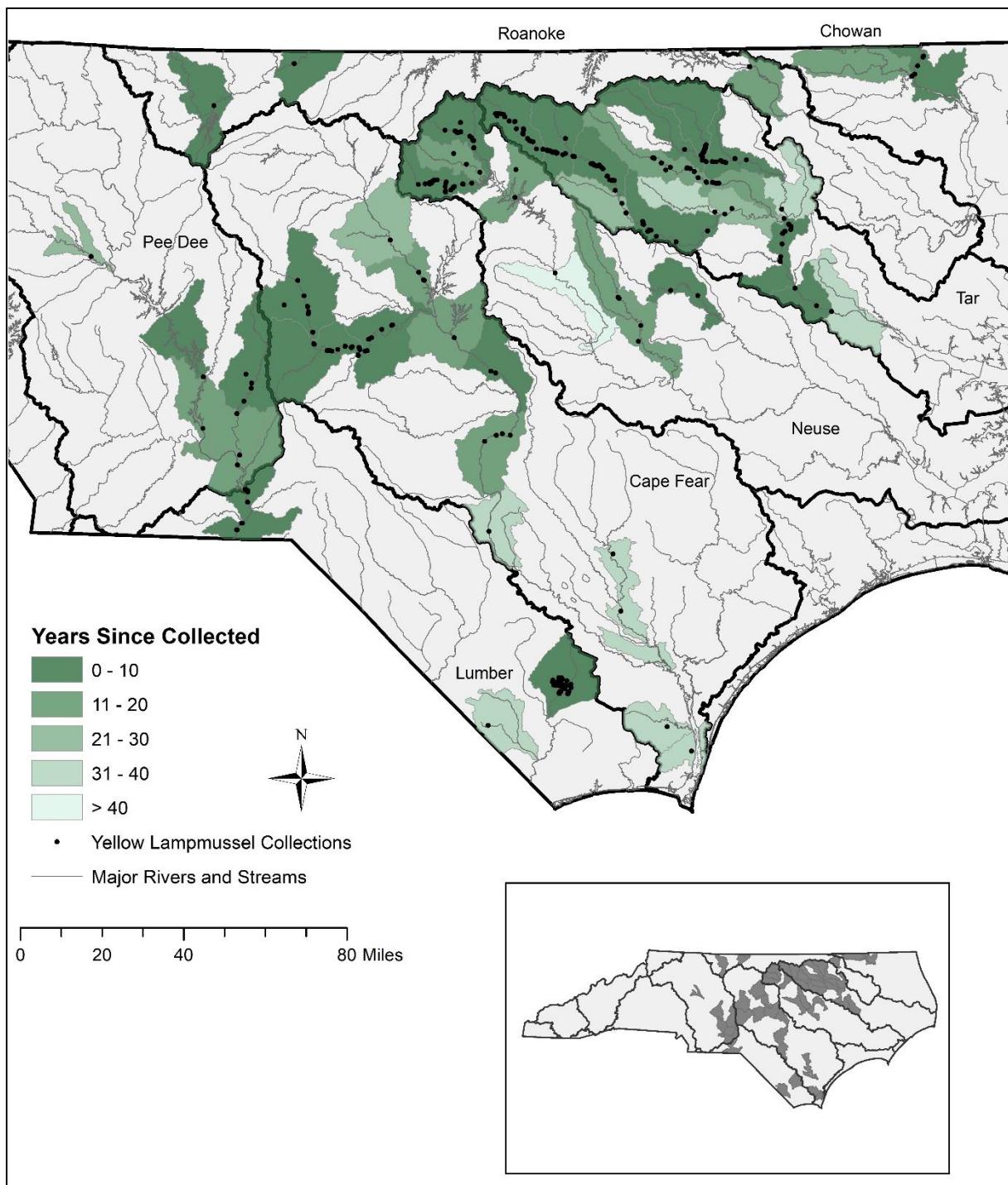
398 USFWS, 1994. Endangered and Threatened Wildlife and Plants; Animal Candidate Review for
399 Listing as Endangered or Threatened Species. *Federal Register*, 59(219).

400 USFWS 2024. Conservation Benefit Agreements for Private Property Owners Fact Sheet. Falls Church,
401 Virginia.

402 Vaughn, C. C., and C. M. Taylor, 1999. Impoundments and the decline of freshwater mussels: A
403 case study of an extinction gradient. *Conservation Biology*, 13(4).
404 <https://doi.org/10.1046/j.1523-1739.1999.97343.x>.

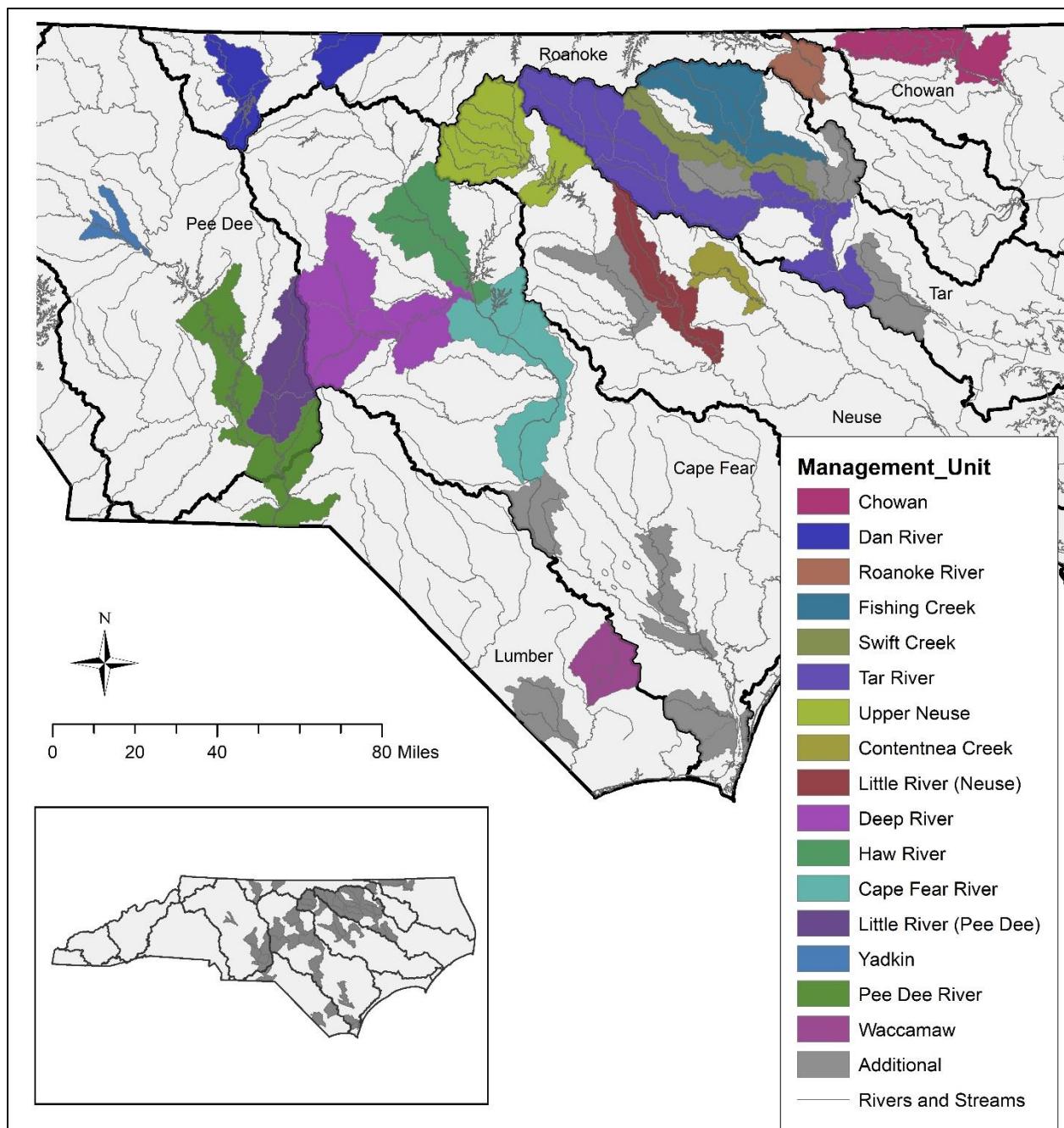
405 Walter, M. J., 2020. In-vitro Propagation of the Federally Endangered Dwarf Wedgemussel
406 (*Alasmidonta heterodon*) and Identification of Bacterial Communities of In-vitro and In-
407 vivo Propagated Freshwater. M.S. Thesis. North Carolina State University, Raleigh, NC.

408 White, K. 2003. Toward Conservation of the Yellow Lampmussel (*Lampsilis cariosa*) in the
409 Sydney River, Cape Breton: Establishment of a Long-term Volunteer Monitoring
410 Program, Identification of the Obligate Fish Host(s) and the Investigation of Life History
411 Traits. ACAP-CB Unpublished Report.


412 Wick, P. C., and A. D. Huryn, 2003. Fish hosts and population demographics of *Lampsilis cariosa*
413 and *Leptodea ochracea* (Unionidae) in Maine. [Poster]. 3rd Biennial Symposium on
414 Freshwater Mollusk Conservation Society, Durham, NC.

415 Yeager, M. M., D. S. Cherry, and R. J. Neves, 1994. Feeding and burrowing behaviors of juvenile
416 rainbow mussels, *Villosa iris* (Bivalvia: Unionidae). *Journal of the North American
417 Benthological Society*, 13:217–222.

418


419 Table 1. Prioritized management units (10-digit hydrologic units) for augmentation and
 420 conservation efforts. Categories are defined as: Primary) MUs within known range,
 421 Additional) MUs within known historical range to be used if Primary MU targets are
 422 exceeded. If Primary and Additional targets are exceeded, then reintroductions will
 423 focus within the presumed historical range of the species (not listed below) if suitable
 424 habitat exists.

Basin	Management Unit	HUC10s		Category
Chowan	Chowan River	301020409	301020302	Primary
Roanoke	Dan River	301010303	301010309	Primary
	Roanoke River	301010701		Primary
Tar	Fishing Creek	302010205	302010202	Primary
		302010203		Primary
		302010206		Additional
	Swift Creek	302010108	302010107	Primary
	Tar River	302010102	302010106	Primary
		302010109	302010103	Primary
		302010304	302010104	Primary
		302010302	302010101	Primary
		302010306		Additional
	Stoney Creek	302010105		Additional
Neuse	Contentnea Creek	302020304		Primary
		302020115	302020116	Primary
	Upper Neuse	302020105	302020102	Primary
		302020101	302020103	Primary
	Neuse River	302020111		Additional
Cape Fear	Cape Fear River	303000407	303000401	Primary
		303000405		Primary
	Deep River	303000302	303000304	Primary
		303000306	303000207	Primary
		303000205		Primary
	Black River	303000608		Additional
	Lower Cape Fear	303000507	303000501	Additional
		303000506		Additional
Pee Dee	Little River	304010403	304010404	Primary
	Pee Dee River	304010405	304010402	Primary
		304010306	304020103	Primary
	South Yadkin River	304010206		Primary
Lumber	Waccamaw	304020603		Primary
	Grissett Swamp	304020605		Additional

425

426 Figure 1: Distribution map of the Yellow Lampmussel in North Carolina depicting 10-digit
 427 hydrological units (colored and categorized by year of most recent record) and collection
 428 locations (black dots). River basins are labeled and outlined in black.

429

430 Figure 2: Management Units (MUs) in the Chowan, Roanoke, Tar, Neuse, Cape Fear, Yadkin-Pee
 431 Dee, and Lumber basins depicting 10-digit hydrologic units. Primary MUs are in color, additional
 432 augmentation/reintroduction MUs are in grey. River basins are outlined in black. Descriptions
 433 of MUs are in Table 1.